Seasonal Patterns of Acid Metabolism and Gas Exchange in Opuntia basilaris.
نویسندگان
چکیده
Acid metabolism and gas exchange studies were conducted in situ on the cactus Opuntia basilaris Engelm. and Bigel. A pattern of significant seasonal variation was evident. The pattern was controlled by rainfall, which significantly influenced plant water potentials, total gas transfer resistances, and nocturnal organic acid synthesis. In winter and early spring, when plant water stress was mild, stomatal and mesophyll resistances remained low, permitting enhanced nocturnal assimilation of (14)CO(2). The day/night accumulation of acidity was large during these seasons. In summer and fall, plant water stress was moderate, although soil water stress was severe. The nocturnal assimilation of (14)CO(2) was very low during these seasons, even in stems with open stomata, indicating large mesophyll resistances restricting exogenous gas incorporation. The day/night accumulation of acidity was reduced, and a low level of acid metabolism persisted throughout this period. The rapid response to a midsummer rainfall emphasizes the importance of plant water potential as a parameter controlling over-all metabolic activity. The seasonal variations of acid metabolism and gas exchange significantly influenced the efficiency of water use and carbon dioxide assimilation. Periods of maximal efficiency followed rainfall throughout the course of the year.
منابع مشابه
Relationships between Stomatal Behavior and Internal Carbon Dioxide Concentration in Crassulacean Acid Metabolism Plants.
Measurements of internal gas phase CO(2) concentration, stomatal resistance, and acid content were made in Crassulacean acid metabolism plants growing under natural conditions. High CO(2) concentrations, sometimes in excess of 2%, were observed during the day in a range of taxonomically widely separated plants (Opuntia ficus-indica L., Opuntia basilaris Engelm. and Bigel., Agave desertii Engelm...
متن کاملDrought Adaptation in Opuntia basilaris: Significance of Recycling Carbon through Crassulacean Acid Metabolism.
Contrasting metabolic regimes operate in Opuntia basilaris Engelm. and Bigelov, before and after precipitation. During periods of drought, atmospheric CO(2) exchange and transpiration are greatly reduced throughout the day/night cycle by stomatal closure and a highly impervious cuticle. The hypothesis is that endogenously produced CO(2) is retained and recycled through dark CO(2) fixation, orga...
متن کاملPolymorphism of Microbody Malate Dehydrogenase in Opuntia basilaris.
Electrophoretic survey of malate dehydrogenase (EC 1.1.1.37) in Opuntia basilaris showed intraspecific polymorphism. Further experiments with microbody malate dehydrogenase-specific antiserum suggest that the polymorphism occurs in microbody malate dehydrogenase independent of the soluble and mitochondrial forms. The pattern of polymorphism is one expected from a two-allele Mendelian system.
متن کاملCharacterization of Early Morning Crassulacean Acid Metabolism in Opuntia erinacea var Columbiana (Griffiths) L. Benson.
The nature and sequence of metabolic events during phase II (early morning) Crassulacean acid metabolism in Opuntia erinacea var columbiana (Griffiths) L. Benson were characterized. Gas exchange measurements under 2 and 21% O(2) revealed increased O(2) inhibition of CO(2) fixation with progression of phase II. Malate and titratable acidity patterns indicated continued synthesis of C(4) acids fo...
متن کاملCarbon isotope ratios in crassulacean Acid metabolism plants: seasonal patterns from plants in natural stands.
A year round study of photosynthesis and carbon isotope fractionation was conducted with plants of Opuntia phaeacantha Engelm. and Yucca baccata Torr. occurring in natural stands at elevations of 525, 970, 1450 and 1900 m. Plant water potentials and the daytime pattern of (14)CO(2) photosynthesis were similar for all cacti along the elevational gradient, despite significant differences in tempe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 54 1 شماره
صفحات -
تاریخ انتشار 1974